High-Availibility for Postgres, based on Pacemaker and Corosync.
This quick start tutorial is based on Debian 8.4, using the crmsh
cluster
client and PostgreSQL 9.6
.
The focus will be on setting up a two node cluster. The specific stuff is in the “Corosync” part of this page and is not restricted to Debian 8.
The Debian HA team missed the freeze time of Debian 8 (Jessie). They couldn’t publish the Pacemaker, Corosync and related packages on time. They did publish them later in Debian 9 (strecth) and backport them officially for Debian 8. So We need to setup the backport repository to install the Pacemaker stack under Debian 8 (adapt the URL to your closest mirror):
cat <<EOF >> /etc/apt/sources.list.d/jessie-backports.list
deb http://ftp2.fr.debian.org/debian/ jessie-backports main
EOF
About PostgreSQL, this tutorial uses the PGDG repository maintained by the PostgreSQL community (and actually Debian maintainers). Here is how to add it:
cat <<EOF >> /etc/apt/sources.list.d/pgdg.list
deb http://apt.postgresql.org/pub/repos/apt/ jessie-pgdg main
EOF
Now, update your local cache:
apt-get update
apt-get install pgdg-keyring
The cluster we are about to build includes two servers called srv1
and srv2
.
Each of them have two network interfaces eth1
and eth2
. IP
addresses of these servers are 192.168.2.10x/24
on the first interface,
192.168.3.10x/24
on the second one.
The IP address 192.168.2.100
, called pgsql-vip
in this tutorial, will be set
on the server hosting the primary PostgreSQL instance.
During the cluster setup, we use the node names in various places, make sure
all your servers names can be resolved to the correct IPs. We usually set this
in the /etc/hosts
file:
cat <<EOF >> /etc/hosts
192.168.2.100 pgsql-vip
192.168.2.101 srv1
192.168.2.102 srv2
192.168.3.101 srv1-alt
192.168.3.102 srv2-alt
EOF
Let install everything we need for our cluster:
apt-get install -t jessie-backports pacemaker crmsh
apt-get install postgresql-9.6 postgresql-contrib-9.6 postgresql-client-9.6
apt-get install resource-agents-paf
By default, Debian set up the instances to put the temporary activity
statistics inside a sub folder of /var/run/postgresql/
. This sub folder is
created by the debian specific tool pg_ctlcluster
on instance startup.
PAF only use tools provided by the PostgreSQL projects, not other specifics to
some other packages or operating system. That means that this required sub
folder set up in stats_temp_directory
is never created and leads to error on
instance startup by Pacemaker.
To creating this sub folder on system initialization, we need to extend the
existing systemd-tmpfiles
configuration for postgresql
to add it. In our
environment stats_temp_directory
is set
to /var/run/postgresql/9.6-main.pg_stat_tmp
, so we create the following
file:
cat <<EOF > /etc/tmpfiles.d/postgresql-part.conf
# Directory for PostgreSQL temp stat files
d /var/run/postgresql/9.6-main.pg_stat_tmp 0700 postgres postgres - -
EOF
If you don’t want to reboot your system to take this file in consideration, just run the following command:
systemd-tmpfiles --create /etc/tmpfiles.d/postgresql-part.conf
WARNING: building PostgreSQL standby is not the main subject here. The following steps are **quick and dirty**. They lack of security, WAL retention and so on. Rely on the PostgreSQL documentation for a proper setup.
The resource agent requires the PostgreSQL instances to be already set up, ready to start and standbys ready to replicate. Make sure to setup your PostgreSQL primary on your preferred node to host it: during the very first startup of the cluster, PAF detects the primary based on its shutdown status.
Moreover, it requires a recovery.conf
template ready to use. You can create
a recovery.conf
file suitable to your needs, the only requirements are:
standby_mode = on
recovery_target_timeline = 'latest'
primary_conninfo
with an application_name
set to the node nameLast but not least, make sure each instance is not able to replicate with
itself! A scenario exists where the primary IP address pgsql-vip
will be on
the same node than a standby for a very short lap of time!
NOTE: as
recovery.conf.pcmk
andpg_hba.conf
files are different on each node, make sure to keep them out of the$PGDATA
so you do not have to deal with them (or worst: forget to edit them) each time you rebuild a standby! Luckily, Debian packaging already enforce this as configuration files are all located in/etc/postgresql
.
Here are some quick steps to build your primary PostgreSQL instance and its
standbys. The next steps suppose the primary PostgreSQL instance is on srv1
.
On all nodes:
su - postgres
cd /etc/postgresql/9.6/main/
cat <<EOP >> postgresql.conf
listen_addresses = '*'
wal_level = replica
max_wal_senders = 10
hot_standby = on
hot_standby_feedback = on
logging_collector = on
EOP
cat <<EOP >> pg_hba.conf
# forbid self-replication
host replication postgres $(hostname -s) reject
host replication postgres $(hostname -s)-alt reject
# allow any standby connection
host replication postgres 0.0.0.0/0 trust
EOP
cat <<EOP > recovery.conf.pcmk
standby_mode = on
primary_conninfo = 'host=192.168.2.100 application_name=$(hostname -s)'
recovery_target_timeline = 'latest'
EOP
exit
On srv1
, the primary, restart the instance and give it the primary vIP address
(adapt the eth0
interface to your system):
systemctl restart postgresql@9.6-main
ip addr add 192.168.2.100/24 dev eth0
Now, on the standby (srv2), we have to cleanup the instance created by the package and clone the primary. E.g.:
systemctl stop postgresql@9.6-main
su - postgres
rm -rf 9.6/main/
pg_basebackup -h pgsql-vip -D ~postgres/9.6/main/ -X stream -P
cp /etc/postgresql/9.6/main/recovery.conf.pcmk ~postgres/9.6/main/recovery.conf
exit
systemctl start postgresql@9.6-main
Finally, make sure to stop the PostgreSQL services everywhere and to disable them, as Pacemaker will take care of starting/stopping everything for you. Start with your primary:
systemctl stop postgresql@9.6-main
systemctl disable postgresql@9.6-main
echo disabled > /etc/postgresql/9.6/main/start.conf
And remove the vIP address from srv1
:
ip addr del 192.168.2.100/24 dev eth0
It is advised to keep Pacemaker off on server boot. It helps the administrator to investigate after a node fencing before Pacemaker starts and potentially enters in a death match with the other nodes. Make sure to disable Corosync as well to avoid unexpected behaviors. Run this on all nodes:
systemctl disable corosync # important!
systemctl disable pacemaker
The cluster communications and quorum (votes) rely on Corosync to work. So this is the first service to setup to be able to build your cluster on top of it.
The cluster configuration client crmsh
is supposed to be able to take care of
this, but this feature was broken when this tutorial was written.
See the related bug report.
First, stop Corosync and Pacemaker on all nodes:
systemctl stop corosync.service pacemaker.service
Here is the content of the /etc/corosync/corosync.conf
file suitable to
the cluster as we described it so far:
totem {
version: 2
crypto_cipher: none
crypto_hash: none
rrp_mode: passive
interface {
ringnumber: 0
bindnetaddr: 192.168.2.0
mcastport: 5405
ttl: 1
}
interface {
ringnumber: 1
bindnetaddr: 192.168.3.0
mcastport: 5405
ttl: 1
}
transport: udpu
}
nodelist {
node {
ring0_addr: srv1
ring1_addr: srv1-alt
}
node {
ring0_addr: srv2
ring1_addr: srv2-alt
}
}
logging {
# to_logfile: yes
# logfile: /var/log/corosync/corosync.log
# timestamp: on
to_syslog: yes
syslog_facility: daemon
logger_subsys {
subsys: QUORUM
debug: off
}
}
quorum {
provider: corosync_votequorum
two_node: 1
expected_votes: 2
wait_for_all: 1
}
A few notes about the two node specific configuration:
two_node: 1
is requiered for two node cluster.expected_votes: 2
is when two_node is chosen, but I like things to be
explicit.wait_for_all: 1
is the default with two_node. when starting from scratch,
prevent the cluster from becoming quorate until all of the nodes have joined
in.For more information about this configuration file, see the corosync.conf
manual page. Make sure this file is strictly the same on each node.
We can now start Pacemaker on every node of the cluster:
systemctl start pacemaker.service
Here is a command to check everything is working correctly:
root@srv1:~# corosync-cmapctl | grep 'members.*ip'
runtime.totem.pg.mrp.srp.members.3232266853.ip (str) = r(0) ip(192.168.2.101) r(1) ip(192.168.3.101)
runtime.totem.pg.mrp.srp.members.3232266854.ip (str) = r(0) ip(192.168.2.102) r(1) ip(192.168.3.102)
or
root@srv2:~# corosync-quorumtool
Quorum information
------------------
Date: Wed Jan 4 20:02:47 2017
Quorum provider: corosync_votequorum
Nodes: 2
Node ID: 3232236134
Ring ID: 8
Quorate: Yes
Votequorum information
----------------------
Expected votes: 2
Highest expected: 2
Total votes: 2
Quorum: 1
Flags: 2Node Quorate WaitForAll
Membership information
----------------------
Nodeid Votes Name
3232236133 1 srv1
3232236134 1 srv2 (local)
After some seconds of startup and cluster membership stuff, you should be able
to see your tow nodes up in crm_mon
:
root@srv1:~# crm_mon -n1D
Node srv1: online
Node srv2: online
We can now feed this cluster with some resources to keep available. This guide
use the cluster client crmsh
to setup everything.
First of all, let’s start with some basic setup of the cluster. Run the following command from one node only (the cluster takes care of broadcasting the configuration on all nodes):
crm conf <<EOC
rsc_defaults resource-stickiness=10
rsc_defaults migration-threshold=5
EOC
In this quick start, we creates three different resources: pgsql-ha
,
pgsql-pri-ip
and fence_vm_xxx
.
The pgsql-ha
resource controls all the PostgreSQL instances of your cluster
and decides where is the primary and where are the standbys.
The pgsql-pri-ip
resource controls the pgsql-vip
IP address. It is
started on the node hosting the PostgreSQL primary resource.
The last resources fence_vm_xxx
are STONITH resources to manage fencing.
This quick start uses the fence_virsh
fencing agent, allowing to power on or
off a virtual machine using the virsh
command through a ssh connexion to the
hypervisor. For more information about fencing, see documentation
docs/FENCING.md
in the source code or online:
http://clusterlabs.github.com/PAF/fencing.html.
WARNING: unless you build your PoC cluster using libvirt for VM management, there’s great chances you will need to use a different STONITH agent. The stonith setup is provided as a simple example, be prepared to adjust it.
Now you’ve been warned, let’s populating the cluster with some sample STONITH
resources using virsh over ssh (fence_virsh
fencing agent). First, we need
to allow ssh password-less authentication to <user>@192.168.122.1
so
these fencing resource can work. Again, this is specific to this setup.
Depending on your fencing topology, you might not need this step. Run on all
node:
ssh-copy-id <user>@192.168.122.1
We can now create one STONITH resource for each node and each fencing
resource will not be allowed to run on the node it is supposed to fence.
Note that in the port
argument of the following commands, srv[1-3]-d8
are
the names of the virutal machines as known by libvirtd side. See manpage
fence_virsh(8) for more infos.
crm conf<<EOC
primitive fence_vm_srv1 stonith:fence_virsh \
params pcmk_host_check="static-list" pcmk_host_list="srv1" \
ipaddr="192.168.2.1" login="<user>" \
identity_file="/root/.ssh/id_rsa" port="srv1-d8" \
op monitor interval=10s
location fence_vm_srv1-avoids-srv1 fence_vm_srv1 -inf: srv1
primitive fence_vm_srv2 stonith:fence_virsh \
params pcmk_host_check="static-list" pcmk_host_list="srv2" \
ipaddr="192.168.2.1" login="<user>" \
identity_file="/root/.ssh/id_rsa" port="srv2-d8" \
op monitor interval=10s
location fence_vm_srv2-avoids-srv2 fence_vm_srv2 -inf: srv2
EOC
The following setup adds a bunch of resources and constraints all together in the same time:
pgsqld
resourcepgsql-ha
responsible to clone pgsqld
everywhere and
define the roles (Master
/Slave
) of each clonecrm conf <<EOC
# 1. resource pgsqld
primitive pgsqld pgsqlms \
params pgdata="/var/lib/postgresql/9.6/main" \
bindir="/usr/lib/postgresql/9.6/bin" \
pghost="/var/run/postgresql" \
recovery_template="/etc/postgresql/9.6/main/recovery.conf.pcmk" \
start_opts="-c config_file=/etc/postgresql/9.6/main/postgresql.conf" \
op start timeout=60s \
op stop timeout=60s \
op promote timeout=30s \
op demote timeout=120s \
op monitor interval=15s timeout=10s role="Master" \
op monitor interval=16s timeout=10s role="Slave" \
op notify timeout=60s
# 2. resource pgsql-ha
ms pgsql-ha pgsqld meta notify=true
# 3. the vIP address
primitive pgsql-pri-ip IPaddr2 \
params ip=192.168.2.100 cidr_netmask=24 \
op monitor interval=10s
# 4. colocation of the pgsql-ha primary and the vIP address
colocation ip-with-pri inf: pgsql-pri-ip pgsql-ha:Master
# 5. ordering constraints
order promote-then-ip Mandatory: \
pgsql-ha:promote pgsql-pri-ip:start \
sequential=true symmetrical=false
order demote-then-stop-ip Mandatory: \
pgsql-ha:demote pgsql-pri-ip:stop \
sequential=true symmetrical=false
EOC
WARNING: in step 5, the start/stop and promote/demote order for these resources must be asymetrical: we MUST keep the vIP on the primary during its demote process so the standbies receive everything before its shutdown.
Note that the values for timeout
and interval
on each operation are based
on the minimum suggested value for PAF Resource Agent.
These values should be adapted depending on the context.